
In this chapter we’ll start to edit our empty project. Open the Main.hx file and change some of the

arguments we mentioned earlier:

Change the game width and height to 320 and 180, respectively.

Set the initial state to PlayState :

 addChild(new FlxGame(320, 180, PlayState));

Afterwards, go to Project.xml and change the window width to 640 and window height to 360. This

combination will give us a nice 2X scaled game in a 16:9 ratio.

You can change the game’s name (which will be displayed on the window title) by changing the title
attribute in the app tag at the top of the file. Feel free to change company as well:

<app title="haxeflixel-game" file="haxeflixel-game"
 main="Main" version="0.0.1"
 company="YourAwesomeGameCompany" />

As you saw earlier, the template tool created a bare-bones PlayState.hx . This will be our main game

room. Let’s open the file:

package;

import flixel.FlxG;
import flixel.FlxSprite;
import flixel.FlxState;
import flixel.text.FlxText;
import flixel.ui.FlxButton;
import flixel.math.FlxMath;

class PlayState extends FlxState
{
 override public function create():Void
 {
 super.create();
 }

 override public function update(elapsed:Float):Void
 {
 super.update(elapsed);
 }
}

Laying the Groundwork

The PlayState

Discover HaxeFlixel 13

This is the basic setup for a blank FlxState . We have 2 main functions:

The method create is called when the state is created, here we will setup and initialize our game

objects.

The method update will called every game frame. Here we’ll put most of our game logic.

Notice how those methods are marked by override : it means that the FlxState class contains all of

those functions.

At the top of the class you’ll see those imports statements:

import flixel.FlxG;
import flixel.FlxSprite;
import flixel.FlxState;
import flixel.text.FlxText;
import flixel.ui.FlxButton;
import flixel.math.FlxMath;

Every time we want to use a new class, we’ll want to import the correct module to have access to all the

types of that module and their functionality.

We can see how this template project has already imported the most basic HaxeFlixel classes, however

we’ll add some more:

import flixel.tile.FlxTilemap;
import flixel.FlxObject;

FlxTilemap will allow us to build a level, while FlxObject contains some collision logic.

Forgetting to import classes is one of the recurrent beginner mistakes! If the compiler returns the error

Type not found : FlxTilemap it means you are likely to be using functions of a class you haven’t

imported yet (in this example, FlxTilemap).

Now let’s add some variables right after the class definition:

Basic map and player

Discover HaxeFlixel 14

class PlayState extends FlxState
{
 var map:FlxTilemap;
 var player:FlxSprite;
 var mapData:Array<Int> = [
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,
 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,
 1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
 1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,
 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,
 1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
 1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
];
...

We have the player FlxSprite and the map FlxTileMap for our level. We also add a Array<Int> which

will describe what our level looks like: 0 is empty, and 1 is a solid block. If you squint your eyes, you can

already make out the shape of the level!

Before moving on, we need to acquire the graphics we’ll use to draw the level. For ease of use, I have

prepared a set of assets to use and I’ll reference them throughout the book.

You will find all the assets I refer to throughout the book inside the book-asset .zip archive you

received when purchasing the book.

Whenever we need a new asset, you can copy it over from book-assets and I’ll tell you in which location

of your project it needs to be saved (usually a sub-folder inside assets).

Alternatively, when browsing the source code for a specific chapter in book-sourcecode , you can find all

the assets used in that chapter inside its assets folder.

Copy the tiles.png file from book-assets/images and place it in the assets/images folder in your

project. This file contains the graphic information to build a level from a tile map array.

Look back at the mapData array: when using the tiles.png file to draw this map, the first tile from the

upper-left will be drawn on the slots with a value of 0 , the second one on the ones with a value of 1 , and

so on.

Move to the create function:

Discover HaxeFlixel 15

override public function create():Void
{
 map = new FlxTilemap();
 map.loadMapFromArray(mapData, 20, 12, AssetPaths.tiles__png, 16, 16);
 add(map);

 player = new FlxSprite(64, 0);
 player.makeGraphic(16, 16, FlxColor.RED);
 player.acceleration.y = 420;
 add(player);

 super.create();
}

We initialize our FlxTilemap , and then call the loadMapFromArray() method. It takes a number of

arguments:

the mapData array we defined earlier

the width and height of the level (20 tiles horizontally, 16 vertically)

the graphic asset to use for the tiles (the file tiles.png in the assets/graphics folder)

the width and height of the tile (16 by 16).

Finally, we add this map to the current state using the add() method.

add() is a FlxGroup function which tells an object it belongs to that state. When a object is added to a

state, it will become active and visible when that state is played.

Calling add in a FlxState will add the specified object to the FlxState we are calling the function from,

in this case PlayState .

Afterwards, we initialize the player. The new function (the constructor) will set the x and y coordinates

to create our player at (in this case, it will be the fourth tile from the upper left of the level as HaxeFlixel

coordinates are counted going left to right and up to down.)

The makeGraphic() function will create a graphic of a specified width , height and color. FlxColor
contains several presets for existing color - now we’re using RED . In order to do so, we need to add the

import statement for the FlxColor utility module:

import flixel.util.FlxColor;

Finally, we give the player an acceleration value of 420 in the Y direction, which will act like our gravity,

and we add the player to the state as well.

If we run our game now, we can see both the level and the player on the screen! Unfortunately, the

player accelerates downwards and quickly falls through the floor, as we have no collisions set up yet!

Well, that was a short play.

Discover HaxeFlixel 16

Let’s fix this. Go to the update() function:

override public function update(elapsed:Float):Void
{
 super.update(elapsed);

 FlxG.collide(map, player);
}

HaxeFlixel provides a very straightforward way of implementing collisions: you simply call the

FlxG.collide() method and pass two FlxObjects . The two objects will be separated on collision, and

you can pass a specific function to execute when the object collide as well - we’ll see more of that later.

If we run the game again, the player will now collide with the floor. But it’s a bit of an anticlimactic

ending, as we have no way to control him. Let’s add some inputs! Make a new function called

movePlayer() :

Collisions

Inputs

Discover HaxeFlixel 17

private function movePlayer():Void
{
 player.velocity.x = 0;

 if (FlxG.keys.pressed.LEFT)
 player.velocity.x -= 80;

 if (FlxG.keys.pressed.RIGHT)
 player.velocity.x += 80;

 if (FlxG.keys.justPressed.C && player.isTouching(FlxObject.FLOOR))
 player.velocity.y = -200;

}

FlxG.keys contains a catalog of all the keys on your keyboard and their current status. We check if LEFT
or RIGHT are pressed, and modify the velocity in the x direction accordingly.

To make the player jump, we set its y velocity to a negative value (going up, remember?) whenever the C
key is pressed, but careful - we want to do this only if the player is touching the ground, or else it will end

up jumping repeatedly in mid-air.

We do this by calling the isTouching() method of FlxSprite (in this case, the player object), which

takes a direction to check against and returns true if the object is currently colliding with something on

that side.

We check against FlxObject.FLOOR , which represents the lower side of an object. Other useful flags are

FlxObject.WALL , which checks for left and right direction, and FlxObject.CEILING , which check for

the upper direction.

We will use all them throughout the book. You can also specify individual collision directions as flags,

such as FlxObject.LEFT , FlxObject.UP , and so on.

We will call this movePlayer() method in update , as these calculations need to happen every frame!

override public function update(elapsed:Float):Void
{
 super.update(elapsed);

 FlxG.collide(map, player);
 movePlayer();
}

Let’s run the game again, and this is already looking sweet! Our player moves and jumps around in this

little level, and everything feels smooth. Off to a great start!

Discover HaxeFlixel 18

Before we go on, let me tell you about a very useful HaxeFlixel feature - the debugger. Press F2 and a

status screen will appear on top of your game, displaying useful information such as the total amount of

game objects and the frames per second your game is running at.

The HaxeFlixel debugger!

If the debugger is not showing when pressing F2 , try the following:

Run the game by typing lime test neko -debug (note the added -debug flag)

OR Open Project.xml and comment out / delete the following line:

<haxedef name="FLX_NO_DEBUG" unless="debug" />

The debugger will display non-fatal errors as well. You can also manually print values to the debugger’s

log by using the FlxG.log.add() function.

Another way to print out message from the application is the trace() function, the Haxe equivalent of

print() - we’ll use it to strategically print debug messages later in the book.

The Debugger

Discover HaxeFlixel 19

Another new powerful feature of the debugger as of HaxeFlixel 4.2.0 is the ability to select objects using

the pointer tool (The “+” icon on the “Tools” toolbar) while the game is running. You can then move those

objects in real time by holding SHIFT while clicking and dragging them; or deleting them by pressing

DELETE .

In the next section we’ll see how to add a more complex level to our state!

HaxeFlixel Handbook: FlxState

HaxeFlixel Handbook: Keyboard

HaxeFlixel Handbook: Debugger

Extra Reading

Discover HaxeFlixel 20

http://haxeflixel.com/documentation/flxstate/
http://haxeflixel.com/documentation/keyboard/
http://haxeflixel.com/documentation/debugger/

